
ModelDoc: A Model-Driven Framework for the Automated

Generation of Modelling Language Documentation

Jevon M. Wright

School of Engineering and Advanced Technology,
Massey University,
Palmerston North,

New Zealand
Email: j.m.wright@massey.ac.nz

Abstract

An important step of developing a modelling language
is in its documentation, in order to assist end-user de-
velopers in creating valid model instances of the lan-
guage. However, documentation written separately
from the actual implementation is prone to becom-
ing out-of-date, and often introduces a long turn-
around time between development and documenta-
tion. In this paper, we present ModelDoc – a model-
driven framework that extracts documentation auto-
matically from existing sources and combines it with
manually-specified documentation. This repository of
facts may then be used in the domain-specific gener-
ation of authoritative and up-to-date documentation
for modelling languages.

Keywords: model documentation, domain-specific
languages, model-driven engineering, documentation
by example

1 Introduction

As discussed by Meservy and Fenstermacher (2005),
models are commonly used to represent complex sys-
tems, and have long been advocated to improve
the reliability and efficiency of software development.
Model-driven engineering is a specific area of software
modelling which advocates the use of models as first-
class citizens in the development process; its intent is
to allow software systems to be generated automati-
cally from the model itself, ensuring that the model
does not go out-of-date (Koch 2007).

In order to benefit from model-driven engineering,
a model needs to have a well-defined specification;
this represents the modelling language or metamodel
across all valid model instances of that language. A
modelling language may be represented in many ways,
such as a formal representation of the syntax through
grammars such as EBNF, or the informal semantic de-
scription of the language through plain text (Wright
2011). As Kelly and Pohjonen (2009) discuss, the suc-
cess of a modelling language greatly depends on many
factors, such as choosing the correct paradigm, spec-
ifying the correct level of abstractness, and providing
an appealing language syntax. They also find that
the provision of adequate documentation is critical to
ensure the success of a modelling language.

For all but the most trivial of languages, the lan-
guage definition itself cannot be used as the only doc-
umentation source, because a language implementa-
tion involves many other concepts – such as platform-
independent concerns, design concepts, rationale for
visual representations, and specific implementation
methods – which currently cannot be adequately de-
scribed within any existing metamodelling technol-
ogy.

In this paper, we will investigate a variety of exist-
ing approaches of keeping documentation for a par-
ticular modelling language consistent with its imple-
mentation, as well as perform an investigation into
the types of features that most documentation sources
provide to their users. This feature investigation will
be used to inspire the design for a repository of doc-
umentation facts, which may be implemented in a
model-driven fashion. This will culminate in a pro-
posal for ModelDoc, a model-driven framework that
can extract documentation from a variety of exist-
ing sources, and compose these facts with manually-
defined documentation in order to support the auto-
matic generation of consistent documentation sources
for a modelling language.

The rest of this paper is as follows. In Section 2,
a brief overview of some of the concepts behind good
documentation sources will be discussed, followed by
a discussion on existing documentation features in
Section 3. The implementation of the ModelDoc
framework will be discussed in Section 4, and this
paper will conclude with a discussion of related and
future work in Section 5.

2 Background

The most widely-known modelling language used in
software engineering is the Unified Modeling Lan-
guage (UML, Object Management Group (2007));
this general-purpose modelling language aims to sup-
port the analysis, design and implementation of soft-
ware and processes. The UML specification defines
the syntax and semantics of the language through a
mixture of formal constraints, visual rules and struc-
tured English language; this specification is vital to
ensure the consistency and meaning of UML model
instances.

Within model-driven engineering, a modelling lan-
guage needs to be well-documented to ensure that
model developers – the end-users that use model
instances of that language – can efficiently create,
modify and utilise the resulting model instances.
This modelling language documentation represents
the documentation source of the language, and a key
concern is in keeping this documentation source con-
sistent with the implementation of the language itself.

As van Deursen and Kuipers (1999) discuss, a good
documentation source is consistent with the imple-
mentation of the system, and provides a flexible way
in which to navigate through the different levels of
abstraction necessary for a user to understand the
system. A model-driven approach satisfies this sec-
ond constraint well; if a repository of documentation
facts is provided within a model-driven environment,
it is possible to generate many different versions of
documentation for each group of stakeholders. For
example, the documentation for a modelling language
may focus on the visual representation for business

users, or focus on the implementation aspects for a
technical implementation guide.

2.1 Deriving Documentation Automatically
from Source Code

The overall framework for the ModelDoc process is
adapted from the documentation generation process
discussed by van Deursen and Kuipers (1999). They
propose the combination of manual and automatic
(re)documentation as a method for providing docu-
mentation about a system. In particular, van Deursen
and Kuipers discuss the process of translating system
sources into repositories of facts, which may then be
formatted into documentation.

The documentation of a software system generally
cannot be fully derived from its source; as Massoni
et al. (2005) argue, it is not usually possible to extract
the structural intent of the original design from source
code. Similarly, one can argue that it would not usu-
ally be possible to fully extract the design intent of
a modelling language from its metamodel definition.
It may also be difficult to translate derived facts be-
tween different layers of abstraction without human
intervention, and it is therefore generally necessary to
provide additional manual facts.

2.2 Documentation by Example

Learning by example is a universally accepted princi-
ple of good teaching and good learning; yet Wu et al.
(2010) and Lieberman (1986) argue that it rarely finds
its way into the design of programming environments.
As Lieberman argue, “a good teacher presents exam-
ples of how to solve problems, and points out what is
important about the examples.”

Since a modelling language environment is a par-
ticular implementation of a programming environ-
ment, the learning by example concept must similarly
apply. A model developer may use a repository of ex-
ample models, properly documented, as part of the
language learning process. This paper will therefore
pay special attention to providing examples as part
of a modelling language documentation source.

Documentation sources including examples are al-
ready present in many existing software frameworks,
such as SWT Snippets for the Eclipse SWT frame-
work (Eclipse Foundation 2010), and within many of
the individual packages of the Java API (Oracle Cor-
poration 2010). Within the model-driven engineering
ecosystem, examples are also an important part when
introducing design patterns (Gamma et al. 1995),
metamodelling architectures (Kleppe et al. 2003), or
new modelling languages (Ceri et al. 2002).

3 Common Documentation Features

To understand the types of documentation features
that a model developer will expect of a documenta-
tion source, a variety of existing popular modelling
language and programming languages will be investi-
gated. The results of this investigation will be used
to propose the structure of a repository for docu-
mentation facts. This repository of documentation
facts can then be populated through the combination
of automatic fact extraction and manual fact defini-
tions, and translated into a usable documentation for-
mat through standard model-driven transformation
frameworks.

A range of existing modelling languages and pro-
gramming languages, within the domains of software
engineering and web engineering, were therefore se-
lected as inspirational documentation sources. Only

languages implemented using an object-oriented ap-
proach were considered. Each language can then be
evaluated in order to identify the most common docu-
mentation features of existing documentation sources.
In this paper, the eight languages selected were:

HTML 5: Hypertext Markup Language A
working draft of the popular language for
describing hypertext, which are then interpreted
by web browsers (W3C Group 2008).

UML: Unified Modeling Language A unified
modelling approach to describing and docu-
menting software, business processes and other
related processes (Object Management Group
2007).

OWL: Web Ontology Language A family of lan-
guages for representing ontologies as part of the
semantic web, which can then be interpreted by
ontology engines (W3C Group 2004a).

PHP: Hypertext Processor A programming lan-
guage for writing interactive web applications,
which is then interpreted by a virtual machine
or compiled natively (Lerdorf et al. 2006).

WebML A language for designing data-intensive
web applications which may then be generated
into code (Ceri et al. 2002).

Java Virtual Machine A programming language
for designing object-oriented software applica-
tions, which is then interpreted with a virtual
machine (Gosling et al. 2005).

SLAng: SLA Definition Language An approach
for formally and informally documenting the ser-
vice level agreements between customers and
providers, which may then be verified at runtime
through JMI (Skene and Emmerich 2006).

EMF: Eclipse Modeling Framework A meta-
modelling framework which can generate Java
scaffolding for a metamodel implementation,
along with Javadoc documentation describing
the model (Steinberg et al. 2009).

The major documentation sources for each of these
eight languages were individually evaluated in order
to identify the common documentation features of
each documentation source. The language-specific
evaluations of these features is provided here in Ta-
ble 1; a description of each of these particular features
will now be discussed.

3.1 Structural Documentation

These documentation features relate to the structure-
based documentation of the language, as discussed by
Steinberg et al. (2009). More is not necessarily bet-
ter; a language that describes a language in terms of
all of these documentation features may become too
large and hinder end-user understandability. As dis-
cussed by van Deursen and Kuipers (1999), it should
be possible to provide different versions of the same
documentation for different stakeholders.

• Packages: For large languages, common con-
cepts are often split into separate packages.

• Classes: The different primitive types, elements
or classes defined in the language.

• Attributes: Classes may define specific or
shared class attributes.

• References: Classes may also define references
to other element instances.

• Subclasses: For languages that use subtyped
classes, the documentation should provide navi-
gation over this subtype hierarchy.

• Abstract Classes: For languages that use the
concept of abstract classes, the documentation
should highlight that these classes cannot be di-
rectly instantiated.

• Rationale: When developing a modelling lan-
guage, it is important to discuss the rationale
behind the inclusion of each element of the lan-
guage (Moody 2009).

3.2 Semantics

While a documentation source for a modelling lan-
guage may easily reproduce the structure of the lan-
guage, it is more difficult to define the behaviour or
meaning of the language itself. As discussed by Harel
and Rumpe (2000), the notation of a language is rep-
resented as its syntax, and the meaning of the lan-
guage is represented as its semantics. As a language
focused on the representation of knowledge, the OWL
family of languages is well-defined through both di-
rect semantics and RDF-based semantics (W3C OWL
Working Group 2009).

• Formal: Formally defined semantics; that is,
semantics defined according to a formal syntax
(Skene and Emmerich 2006).

• Informal: Informally defined semantics; that is,
semantics not defined to any formal syntax, such
as the English language.

• Syntax: A formally defined syntax or language
structure (Harel and Rumpe 2000); for visual
languages, this may include the visual represen-
tation of each modelling language element.

• Invariants: Invariants or constraints that can-
not be defined using syntax or structure, defined
separately from informal semantics, but using a
formal syntax.

3.3 Documentation Accessibility

These documentation features do not refer to the con-
tent of the documentation source, but rather to par-
ticular accessibility and usability features that can
improve the efficiency of the documentation for end-
users.

• Index: An alphabetised list of key concepts and
phrases used within the documentation, along
with a navigable interface such as hyperlinking
for each result.

• FAQ: An informal section describing frequently
asked questions and answers for using the lan-
guage itself.

• Examples: Documentation by example allows
new users to quickly grasp onto language con-
cepts, and provides a repository of common de-
sign patterns, as discussed earlier in Section 2.2.

• Pseudocode: For executable modelling
languages, pseudocode provides a platform-
independent way of describing how operations
work, and pseudocode documentation allows
users to understand the effects of an operation
without having to investigate the source.

• Link to Source: For open-source projects, it
may be possible to directly link from the docu-
mentation of a model element to the underlying
implementation of that element.

• User Contributions: By allowing users to con-
tribute new or missing knowledge directly to
the documentation source, the language docu-
mentation becomes a richer and more collabo-
rative environment. However, this means that
the documentation source must continually be
re-released, or made available online.

The suite of documentation for each of the selected
eight programming languages may now be evaluated
against each of these documentation features, and the
results from this investigation are presented here in
Table 1.

3.4 Discussion

The language-specific evaluation of documentation
sources provided in Table 1 can be used to infer some
conclusions on the documentation approaches of each
language.

For example, we can see that while informal se-
mantics are often documented, it is less likely that
formal semantics are also documented. Similarly one
can also see that syntax is often specified, yet invari-
ants are not supplied as often. This is important,
because invariants allow the syntax of the language
to be further refined. In particular, neither PHP or
WebML has documented formal semantics, and this
may highlight an area of future work for the devel-
opers of these languages – in the case of PHP, the
runtime semantics of their large suite of test cases
(PHP Group 2011) could be integrated directly into
their documentation.

Out of the eight documentation sources evaluated,
PHP was the only language that provided a list of
FAQs, and similarly the only language that provided
a mechanism for including user contributions to its
major documentation source. It may be the case that
languages with a formal definition – such as UML and
OWL – provide a specification strong enough that
their authors consider FAQs and user contributions
unnecessary. However these documentation elements
improve the accessibility of the language, and it may
be beneficial to include FAQs or user contributions in
future documentation sources.

4 Implementation

In this section, the implementation of the Model-
Doc framework will be described. ModelDoc aims to
combine automatically derived documentation from
source code with manually provided facts, in order
to keep the documentation source consistent with the
implementation itself.

4.1 Eclipse Modeling Framework

If a model designer is using the Eclipse Modeling
Framework (Steinberg et al. 2009), then much of the
structure and syntax of a language may be derived
automatically from the Ecore metamodel. EMF also
supports the annotation of model elements with ad-
ditional documentation, as in Listing 1; these anno-
tations can then be made available and accessible at
runtime.

If the EMF annotation uses a particular EAnnota-
tion as illustrated in Listing 1, then this annotation
will be included in the Javadoc documentation for
the generated model element. This annotation will
then be available through standard Javadoc generated
documentation. EMF annotations therefore provide
an easy way to attach documentation to model ele-
ments, however the standard EMF code generation

Language HTML UML OWL PHP WebML Java SLAng EMF IAML

Structural Documentation

Packages - X - X X X X X -

Classes X X X X X X X X X

Attributes X X X X X X X X X

References X X X X X X X X X

Subclasses - X X X - X X X X

Abstract Classes - X - X - X X X X

Rationale X X X - X - - - X

Semantics

Formal X X X - - X X - -

Informal X X X X X X X - X

Syntax X X X X X X - - X

Invariants X X X - - - X X X

Documentation Accessibility

Index X X X X X X - X X

FAQ - - - X - - - - -

Examples X X X X X X - - X

Pseudocode X - X - - - X - -

Link to Source - - - - - - - - X

User Contributions - - - X - - - - -

Table 1: Feature comparison of existing documentation sources against the ModelDoc-generated documentation
of IAML

<eClassifiers xsi:type="ecore:EClass" name="CastNode"
eSuperTypes="#//ActivityNode">

<eAnnotations source="http://www.eclipse.org/emf/2002/GenModel">
<details key="documentation" value="Allows one {@model DataFlowEdgeSource datatype}
to be cast to another {@model DataFlowEdgeDestination datatype}. Has an outgoing
"check" {@model DataFlowEdge} which can be used to check for invalid
casts (otherwise a failing conversion is silent)."/>

</eAnnotations>
</eClassifiers>

Listing 1: An annotation in EMF for additional model element documentation

platform presently supports only the single annota-
tion “documentation” (Steinberg et al. 2009).

Within EMF, the metamodels for a modelling lan-
guage can be considered the “source code” for the
modelled system, as discussed by van Deursen and
Kuipers (1999). This means that many of the doc-
umentation features discussed earlier in Section 3 –
such as packages, classes, attributes and enumerations
– can be automatically derived from the instance of
the Ecore metamodel.

4.2 The Internet Application Modelling Lan-
guage

As a proof-of-concept, the ModelDoc framework will
be applied to a platform-independent modelling lan-
guage for for Rich Internet Applications, called the
Internet Application Modelling Language (IAML) as
described by Wright (2011). This language includes
a visual notation within a generated graphical en-
vironment, allowing for RIAs to be defined visually
and generated into executable web applications from
within an Eclipse-based environment. The implemen-
tation of this language is available online under an
open-source license, allowing for documentation facts
to link directly to their implementations.

The metamodel for IAML is implemented as an
Ecore metamodel through EMF as iaml.ecore. As
described by Steinberg et al. (2009), this Ecore meta-

model instance is then used to generate the Java
source code scaffolding necessary for interaction with
instances of this modelling language. As a model-
driven language, IAML also defines a suite of code
generation templates through the openArchitecture-
Ware Xpand framework (Efftinge et al. 2008), which
may be used to generate a PHP/Javascript-based web
application from a given model instance.

Finally, IAML also implements the concept of
model completion, where an intended model may be
automatically inferred from a base model as per docu-
mented conventions. As discussed by Wright and Di-
etrich (2010), one of the major challenges for provid-
ing model completion is in providing adequate docu-
mentation for the process; a developer needs to under-
stand these documented conventions without having
to manually study the inference rules to understand
their effects.

These three aspects of the IAML implementation
illustrate three key sources of documentation that
need to be provided to a model developer: the struc-
ture and syntax of the metamodel, including its visual
representation; the intent behind the inference rules
of model completion; and any platform-specific con-
cerns that arise with the code generation templates.

Figure 1: The model-driven process of ModelDoc in generating IAML system documentation, adapted from
van Deursen and Kuipers (1999)

4.3 Fact Extraction

The process of generating the documentation in Mod-
elDoc is illustrated here in Figure 1; in this figure,
solid lines represent automated processes, and dashed
lines represent the inclusion of information defined
manually. Facts are derived from a variety of system
sources, such as test models, constraints and code
generation templates, using documentation loaders1

written in Java.
To store these facts within a repository, a meta-

model is defined using EMF (Steinberg et al. 2009),
which is used as the definition of a model instance
that stores facts for a given set of system sources. A
full discussion on the structure of this metamodel is
well outside the scope of this paper; however, the in-
terested reader may obtain a copy of this metamodel
online at http://openiaml.org/modeldoc/.

A ModelDoc model instance is then passed along
to a model-to-text transformation implemented in
openArchitectureWare, which can import additional
documentation defined manually in HTML. Alterna-
tively, the model instance may be serialised to the
XML-based XMI format, and loaded by any number
of other model-driven tools that support Ecore meta-
models.

1
Documentation loaders are Java classes which implement the

org.openiaml.docs.generation.ILoader interface; in the current im-
plementation of ModelDoc, thirteen such loaders are provided.

4.4 Documentation through Javadoc Tags

To support metamodel developers in the definition of
the manual facts of the system – that is, documen-
tation that cannot easily be derived with the appro-
priate level of abstraction from the system sources –
ModelDoc reuses the existing concept of Javadoc tags
(Kramer 1999).

Javadoc allows a developer to provide additional
annotations for some component of a Java software
system, such as a class or method. These annotations
are provided as part of a source comment for a par-
ticular source element. For example, the @version
and @author tags allow an author to annotate a Java
source element with version and author metadata;
similarly, the @return tag adds additional meaning
to the return value of a method. These tag instances
are then used in the generation of an API documen-
tation using doclets.

Importantly, the design of Javadoc places the an-
notations of source elements very close to the actual
source elements themselves. The intent behind this
process is that it encourages the use of documentation
as an integral part of the specification, and also tries
to remove inconsistencies between different documen-
tation sources that may not be synchronised (Kramer
1999). However, the structure of the documentation
produced is restricted to the code structure, as dis-
cussed by Aguiar and David (2005).

In the case of the documentation of IAML, the
standard Javadoc tags – such as @version and

Javadoc Tag Intended Usage

@model An inline tag which provides a hyperlink to another model element accord-
ing to its simple name; similar to the builtin @link Javadoc tag.

@implementation The annotated source code element describes the behaviour or platform-
specific concerns of the implementation of a particular modelling element,
such as its underlying architecture, target languages, or operation pseu-
docode.

@inference The annotated source code element describes an inference rule used inmodel
completion, as described by Wright and Dietrich (2010); the tag describes
the intent of the rule in plain English, with regards to particular modelling
language elements.

@example The annotated source code element describes an example model ; the tag
describes the example and its rationale for inclusion in the documentation
in plain English, with regards to particular modelling language elements.

Table 2: Custom Javadoc tags defined by ModelDoc, used to provide manual facts in the documentation of
IAML

@author – are reused, and additional custom tags are
also provided as illustrated in Table 2. This approach
is not novel, and has been used in other scenarios for
software engineering – as discussed later, this includes
domains such as design patterns and API contracts.

Listing 2 illustrates an example use of these cus-
tom tags as applied to a Java class in order to docu-
ment additional facts about the source system. In this
example, we illustrate that the intended behaviour of
a ExitGate model element is that it prevents access
outside of a Scope until all incoming Conditions to
that Scope are false.

These facts are attached to a test case that di-
rectly tests these particular facts, reducing the pos-
sibility of the documentation losing synchronisation
with the actual implementation – if the behaviour of
any of these model elements change in the future, then
the metamodel developer will have to subsequently
modify the failing test cases, and this erroneous doc-
umentation can be fixed simultaneously when fixing
the test case.

4.5 Generation of Hypertext Documentation

In order to present the final documentation source
of IAML, hypertext has been considered is the most
natural fit, as it provides “a single interface to browse
across large classes of information” (Berners-Lee and
Cailliau 1990). All of the elements of the generated
documentation are therefore accessible using a stan-
dard web browser, including all of the source code el-
ements in the system. If the source code is also made
publicly available – such as under an open source li-
cense – then derived facts can also be directly linked
to the source code itself.

While using hypertext documentation is fine for
describing textual and some graphical documenta-
tion, one difficult arises when trying to illustrate ex-
amples that are implemented in a graphical editor.
Normally, an example model would need to be loaded
by the graphical environment itself, which may in-
cur a mental penalty in terms of switching between
different interfaces.

ModelDoc solves this problem by automatically
transforming the example models into hypertext
graphical interfaces, which do not require the mod-
elling environment to be loaded (or even installed).
While this means that detail about the model may be
lost – for example, it is not possible to drag shapes
around, or to see all of the attributes of individual
model elements – there is still enough information for
a user to form a basic mental model, without switch-
ing out of the documentation source. For every exam-
ple model exported this way, ModelDoc also provides

a link to the original example model itself, so that
the user may load up the model instance normally if
necessary.

Since IAML models are designed in a hierarchical
fashion, it is possible to split up the source model into
many different views, linking these views together us-
ing hyperlinks. Figure 2 illustrates how an example
model in IAML is navigable; a documentation user
may click on almost any model element in order to
view its contained elements, and this view is exported
directly from the underlying GMF implementation.

5 Discussion

For the end-user model developer, the metamodel
documentation for IAML generated by ModelDoc has
been extremely valuable for the development of IAML
model instances. An annotated screenshot of this
generated documentation is provided here in Fig-
ure 3. This generated documentation is available on-
line at http://openiaml.org/model/, and the inter-
ested reader is encouraged to view this documentation
themselves and interact with the examples.

In the development of an implementation of the
Ticket 2.0 benchmarking application (Wright and Di-
etrich 2008), the generated language documentation
was referred to frequently. In particular, the devel-
opment of the IAML model instance only required
the Eclipse modelling environment and a standard
web browser to be open. Similarly, the range of doc-
umented examples provides a simple way to under-
stand how certain modelling concepts work, and on
common model instance design approaches.

With respect to the development process of the
modelling language itself, ModelDoc has also been
valuable in keeping the documentation of the lan-
guage synchronised with the language itself. At the
time of writing, the IAML metamodel has been mod-
ified 234 times over its 35-month development lifecy-
cle2; without the support of a tool like ModelDoc,
this could imply that an independent documentation
source would have also required 234 revisions, which
represents a significant amount of development effort.

ModelDoc can also assist in the modelling lan-
guage design process, if the ModelDoc framework
is introduced early into the development lifecy-
cle. By translating a source metamodel into a
platform-independent hypertext representation, in-
terested third parties can contribute in the design of
the modelling language without needing to install the
metamodelling environment itself. Similarly, the fact

2This represents the number of times that the iaml.ecore meta-
model definition file has been modified in its Subversion repository.

/**
* Demonstrating the use of ExitGate to prevent access outside a
* Scope without first viewing an advertisement page.
*
* @author jmwright
* @example ExitGate
* Using an {@model ExitGate} to prevent access outside of a {@model Scope} without
* first viewing an advertisement {@model Frame}.
* @implementation ExitGate
* If a {@model Session} contains a {@model ExitGate}, all incoming
* {@model Condition}s must be false before the {@model Scope} may be left.
*/

public class ExitGateAd extends CodegenTestCase {
...

Listing 2: A sample ModelDoc comment

extraction process may be integrated with a metrics
generation tool to create metamodelling metrics, as
illustrated by Wright (2011).

5.1 Related Work

There is a significant body of related work that also
utilise the Javadoc documentation method to sup-
ply additional documentation, and a wide repository
of proposed Javadoc tags for particular use cases.
For example, Torchiano (2002) proposes tags such
as @pat.name and @pat.role to describe instances
of design patterns in Java software (Gamma et al.
1995). Similarly, Briand et al. (2003) propose tags
such as @pre, @post and @invariant to describe the
contract-based pre-conditions, post-conditions and
invariants of an API.

Javadoc tags may also be used to extract a meta-
model from an existing software structure; for ex-
ample, the EMF framework can identify @model an-
notations on an existing API to define an Ecore
metamodel instance (Steinberg et al. 2009), and uses
the @generated tag to mark automatically-generated
scaffolding.

Leslie (2002) reuse the Javadoc fact extraction pro-
cess itself to propose an XML-based repository of
both the structure of Java software and the Javadoc
comments within its source. This serialisation process
is similar to the ModelDoc serialisation of extracted
facts, and the ModelDoc repository is automatically
serialised into the XML-based XMI format. XML-
based model transformations such as XSLT (W3C
Group 2007) may be used to integrate the two repos-
itories. However, the EMF-based ModelDoc meta-
model provides a richer interface to third parties than
an DTD-based XML representation of the same facts,
and this is a benefit of using a model-driven approach.

Another related work is XSDoc as proposed by
Aguiar and David (2005), which also advocates weav-
ing of multiple documentation sources; in this case,
from Wiki text. In this approach, snippets of Java
software can be directly inserted into generated doc-
umentation. This approach is better suited to de-
scribe particular aspects of an existing software sys-
tem, rather than in describing all aspects of the sys-
tem, as it is focused on the source code level rather
than the architectural level. Nevertheless, it may be
desirable to use such an approach within ModelDoc
for describing complex operations, if the alternative
of describing pseudocode through a @pseudocode tag
is not desirable.

While this paper has focused on the documen-
tation of a modelling language, there is also exten-
sive work on the documentation of model instances of
modelling languages. The WebML web application

modelling language includes a tool called WebMLDoc
(Ceri et al. 2002), which generates a Javadoc-style
API documentation for a given WebML model in-
stance. As WebML is a visual modelling language,
this documentation includes a navigable visual in-
terface to the model instance, and this approach is
similar to the hypertext navigation of example mod-
els approach used in ModelDoc. However, by de-
sign the ModelDoc extraction of example models can
apply to any GMF-based diagram editor, whereas
the WebMLDoc extraction process can only apply to
WebML model instances.

5.2 Future Work

The fact extraction process of ModelDoc excels at ex-
tracting domain-independent facts, such as the meta-
model structure, code generation templates, and in-
ference rules. However, some modelling languages
may introduce new first-class concepts – such as type
systems or events – and these new concepts should
similarly be treated as first-class elements within the
documentation.

Currently, these first-class concepts are extracted
by extending the ModelDoc code generation tem-
plates, and by defining additional language-specific
Javadoc tags3 which are identified by these templates.
As the code generation templates of ModelDoc are de-
fined by the language Xpand, these extensions could
be provided through the concept of dynamic tem-
plates (Efftinge et al. 2008); here, a third party can
provide aspect-oriented extensions to a suite of tem-
plates, which are merged at runtime.

It may be possible to describe these first-class con-
cepts using a special mapping-based metamodel as in-
put to the ModelDoc process; for example, specifying
that all containment references to a type named Event
should be identified as events, and similarly provide
a new inline Javadoc tag @event. This may improve
the usability and independence of the ModelDoc ap-
proach, and remains an interesting avenue of future
work.

There are also a rich variety of existing documenta-
tion sources that can be integrated into the ModelDoc
framework as future work. For example, code analy-
sis tools such as GUERY (Dietrich 2011) can be used
to identify architectural antipatterns in dependency
graphs, and the output of these tools could augment
the documentation repository. It is possible to use
the metamodel extensibility support of EMF to define
tool-specific extensions to the ModelDoc metamodel,

3For example, the IAML-based implementation of ModelDoc
defines the additional inline Javadoc tags @event and @type, for
Events and XSD datatypes (W3C Group 2004b) respectively.

Figure 2: Hypertext navigation of example models

which can then be integrated into the documentation
through the dynamic templates support of Xpand.

Some of the desired documentation source features
– such as pseudocode, syntax, FAQs and user con-
tributions – have not yet been implemented through
the ModelDoc framework, as illustrated in Table 1.
In some cases, these can be supported through the
definition of new Javadoc tags. For example, a new
@psuedocode tag could be used to define pseudocode
on operations, and included as part of the annotation-
based documentation of the EMF model itself; al-
ternatively, it may be possible to derive the pseu-
docode from an annotated OCL definition (Steinberg
et al. 2009). An implementation of user contribu-
tions would require a method of accepting, storing
and parsing user feedback – such as a web service –
and this similarly remains future work.

As the repository-to-documentation source pro-
cess is performed in a platform-independent way, it is
possible to transform the same repository into many
different versions and formats. This has already been
achieved in the printable version of the documenta-
tion for IAML, as illustrated by Wright (2011); here,
the Xpand templates were used to generate LATEX-
formatted templates4, which could be included into a
standard LATEX document.

Since the Eclipse environment supports inline web
browsers5, it may be possible to provide a specific doc-
umentation view within the modelling environment
that shows the generated documentation for the type
of a selected graphical model element. This may im-
prove the performance and efficiency of developing
model instances in a graphical model-driven environ-
ment, and would integrate well into a metamodelling
environment as a whole.

4Since the hand-written documentation of IAML was imple-
mented using HTML, it was necessary to implement an HTML-
to-LATEX converter as part of this extension.

5For example, web browsers may be supplied through the
Eclipse org.eclipse.ui.browser package.

Finally, since the ModelDoc repository is repre-
sented as an EMF metamodel, it is possible to docu-
ment the ModelDoc repository structure using Mod-
elDoc itself. This would represent the ultimate in
documentation dogfooding, and remains an interest-
ing aspect of future work.

The work described in this paper has been imple-
mented as free software under an open-source licence,
as part of a model-driven graphical CASE tool for
modelling RIAs. The interested reader is encouraged
to learn more online at http://openiaml.org/.

References

Aguiar, A. & David, G. (2005), WikiWiki Weav-
ing Heterogeneous Software Artifacts, in ‘Pro-
ceedings of the 2005 International Symposium on
Wikis (WikiSym ’05)’, ACM, New York, NY, USA,
pp. 67–74.

Berners-Lee, T. & Cailliau, R. (1990), World-
WideWeb: Proposal for a HyperText Project,
Technical report, CERN.

Briand, L. C., Labiche, Y. & Sun, H. (2003), ‘Inves-
tigating the use of analysis contracts to improve
the testability of object-oriented code’, Software:
Practice and Experience 33, 637–672.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M.,
Comai, S. & Matera, M. (2002), Designing Data-
Intensive Web Applications, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Dietrich, J. (2011), ‘The GUERY Framework’.
URL: http://code.google.com/p/gueryframework/

Eclipse Foundation (2010), SWT Snippets.
URL: http://www.eclipse.org/swt/snippets/

Efftinge, S., Friese, P., Haase, A., Hübner, D.,
Kadura, C., Kolb, B., Köhnlein, J., Moroff, D.,

Figure 3: Hypertext documentation for an IAML model element DomainType as generated by ModelDoc

Thoms, K., Völter, M., Schönbach, P., Eysholdt,
M. & Reinisch, S. (2008), openArchitectureWare
Documentation.

Gamma, E., Helm, R., Johnson, R. & Vlissides,
J. (1995), Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Profes-
sional.

Gosling, J., Joy, B., Steele, G. & Bracha, G. (2005),
The Java Language Specification, 3rd edn.

Harel, D. & Rumpe, B. (2000), Modeling Languages:
Syntax, Semantics and All That Stuff, Part I: The
Basic Stuff, Technical report.

Kelly, S. & Pohjonen, R. (2009), ‘Worst Practices for
Domain-Specific Modeling’, IEEE Software 26, 22–
29.

Kleppe, A. G., Warmer, J. & Bast, W. (2003), MDA
Explained: The Model Driven Architecture: Prac-
tice and Promise, Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA.

Koch, N. (2007), ‘Classification of Model Transfor-
mation Techniques Used in UML-based Web Engi-
neering’, Software, IET 1(3), 98–111.

Kramer, D. (1999), API Documentation from Source
Code Comments: A Case Study of Javadoc, in
‘Proceedings of the 17th Annual International Con-
ference on Computer Documentation (SICDOC
’99)’, ACM, New York, NY, USA, pp. 147–153.

Lerdorf, R., Tatroe, K. & MacIntyre, P. B. (2006),
Programming PHP, 2nd edn, O’Reilly.

Leslie, D. M. (2002), Using Javadoc and XML to Pro-
duce API Reference Documentation, in ‘Proceed-
ings of the 20th annual international conference on
Computer documentation (SIGDOC ’02)’, ACM,
New York, NY, USA, pp. 104–109.

Lieberman, H. (1986), ‘An Example Based Environ-
ment for Beginning Programmers’, Instructional
Science 14(3), 277–292.

Massoni, T., Gheyi, R. & Borba, P. (2005), A Model-
Driven Approach to Formal Refactoring, in ‘Com-
panion to the 20th ACM SIGPLAN Conference
on Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA ’05)’, ACM,
New York, NY, USA, pp. 124–125.

Meservy, T. O. & Fenstermacher, K. D. (2005),
‘Transforming Software Development: An MDA
Road Map’, IEEE Computer 38(9), 52–58.

Moody, D. L. (2009), ‘The “Physics” of Notations:
Toward a Scientific Basis for Constructing Visual
Notations in Software Engineering’, IEEE Trans-
actions on Software Engineering 35, 756–779.

Object Management Group (2007), OMG Unified
Modeling Language (OMG UML), Superstructure,
v2.1.2, Technical report.
URL: http://www.omg.org/spec/UML/2.1.2/

Oracle Corporation (2010), Java Platform SE 6.
URL: http://download.oracle.com/javase/6/docs/api/

PHP Group (2011), ‘PHP Quality Assurance Team’.
URL: http://qa.php.net/

Skene, J. & Emmerich, W. (2006), Specifications,
not Meta-Models, in ‘Proceedings of the 2006 In-
ternational Workshop on Global Integrated Model
Management (GaMMa ’06)’, ACM, New York, NY,
USA, pp. 47–54.

Steinberg, D., Budinsky, F., Paternostro, M. &
Merks, E. (2009), EMF: Eclipse Modeling Frame-
work, 2nd edn, Addison-Wesley Longman, Amster-
dam.

Torchiano, M. (2002), Documenting Pattern Use in
Java Programs, in ‘Proceedings of the IEEE In-
ternational Conference on Software Maintenance
(ICSM 2002)’, Montreal, Canada.

van Deursen, A. & Kuipers, T. (1999), ‘Building Doc-
umentation Generators’, IEEE International Con-
ference on Software Maintenance p. 40.

W3C Group (2004a), OWL Web Ontology Language
Reference, Technical report, W3C Recommenda-
tion 10 February 2004.
URL: http://www.w3.org/TR/owl-ref/

W3CGroup (2004b), XML Schema Part 2: Datatypes
Second Edition, Technical report, W3C Recom-
mendation 28 October 2004.
URL: http://www.w3.org/TR/xmlschema-2/

W3C Group (2007), XSL Transformations (XSLT)
Version 2.0, Technical report, W3C Recommenda-
tion 23 January 2007.
URL: http://www.w3.org/TR/xslt20/

W3C Group (2008), HTML 5: A vocabulary and as-
sociated APIs for HTML and XHTML, Technical
report, W3C Working Draft 26 February 2008.
URL: http://www.w3.org/html/wg/html5/

W3C OWL Working Group (2009), OWL 2 Web On-
tology Language Document Overview, Technical
report, W3C Recommendation 27 October 2009.
URL: http://www.w3.org/TR/owl2-overview/

Wright, J. (2011), A Modelling Language for Inter-
active Web Applications, PhD thesis, Massey Uni-
versity, Palmerston North, New Zealand.

Wright, J. & Dietrich, J. (2008), Requirements for
Rich Internet Application Design Methodologies, in
‘Proceedings of the 9th International Conference
on Web Information Systems Engineering (WISE
2008)’, Auckland, New Zealand.

Wright, J. & Dietrich, J. (2010), Non-Monotonic
Model Completion in Web Application Engineer-
ing, in ‘Proceedings of the Doctoral Symposium at
the 21st Australian Software Engineering Confer-
ence (ASWEC 2010)’, Auckland, New Zealand.

Wu, Y.-C., Mar, L. W. & Jiau, H. C. (2010),
CoDocent: Support API Usage with Code Example
and API Documentation, in ‘Proceedings of the 5th
International Conference on Software Engineering
Advances’, IEEE Computer Society, Los Alamitos,
CA, USA, pp. 135–140.

